

СИСТЕМА ХРАНЕНИЯ ДАННЫХ

РУКОВОДСТВО ПО РАБОТЕ С ГРАФИЧЕСКИМ ИНТЕРФЕЙСОМ TROK

Москва, 2025г

1. Общая информация	3
2. Процедура авторизации	4
3. Дашборд	5
4. Ресурсы	7
5. Узлы	g
6. Пулы хранения	12
7. Группа ресурсов	
8. Шаблоны ресурсов	19
9. Список томов	21
10. Отчеты об ошибках	22
11. Вапидация полей	25

1. Общая информация

Графический интерфейс системы управления хранилищами предоставляет интуитивно понятный инструмент для администрирования распределенных ресурсов хранения данных. Его основа состоит из нескольких ключевых модулей, каждый из которых решает специфические задачи в рамках единой архитектуры.

Модуль «Ресурсы» служит для управления всеми доступными ресурсами и их мониторинга в системе хранения данных.

В разделе «Узлы» интерфейс предоставляет возможность добавления новых узлов в кластер. Автоматическая проверка доступности и совместимости снижает риск некорректной конфигурации. Для добавленных узлов реализован мониторинг в реальном времени, а также фильтрация для получения более актуальных данных.

Модуль «Пулы хранения» позволяет объединять физические или виртуальные носители в одну логическую единицу с заданными характеристиками.

Вкладка «Группы ресурсов» предназначена для управления распределенными хранилищами и служит для создания шаблонов, которые автоматизируют процесс развертывания и управления ресурсами хранения данных.

Вкладка «Шаблоны ресурсов» предназначена для изменения созданных режимов репликации для ранее созданных групп ресурсов.

«Список томов» предоставляет табличное представление всех созданных ресурсов с возможностью фильтрации по имени и узлу.

2. Процедура авторизации

После ввода URL-адреса, предназначенного для доступа к интерфейсу в формате http://hostname, в командной строке браузера открывается стартовая страница.

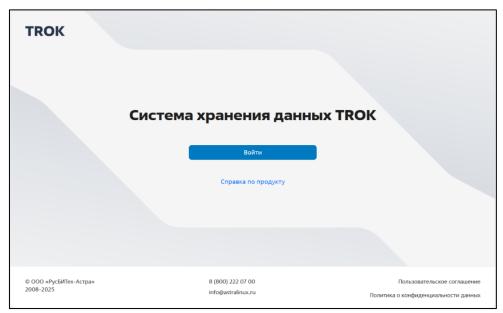


Рисунок 1 – Стартовая страница

Нажмите на кнопку «Войти», чтобы перейти на страницу авторизации. Введите учетные данные в поля «Логин» и «Пароль» и нажмите «Войти».

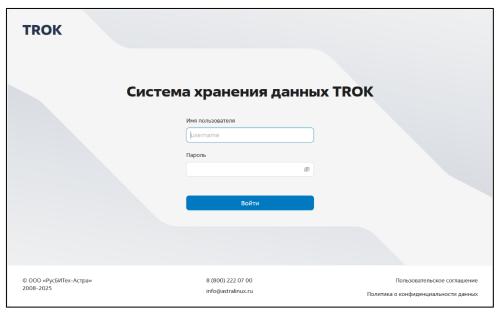


Рисунок 2 – Страница авторизации

3. Дашборд

При первой авторизации по базовому URL, например, http://<имя_хоста>/, вы по умолчанию попадаете на главную панель управления (дашборд). В случае же, если переход осуществляется непосредственно по адресу конкретного раздела, например, http://<имя_хоста>/storage-pools, то после успешной авторизации вы будете перенаправлены именно в этот раздел – пулов хранения

ТКОК

Дашборд

Ресурсм

Уэлы

Путы уранения
Пруты Ресурсов

Список Томов

Дашборд

Ресурсм

Дашборд

Ресурсм

Всего: 25

Ресурсм

Ок. 0

Ок. 0

Огіпе 20

Огіпе 20

Огіпе 20

Огіпе 20

Огіпе 20

Огіпе 30

Место для храмения
Всего: 9.97 Гиб

Дашборд

Место для храмения
Всего: 9.97 Гиб

Пользовательское соглашение інбераstrаlіпих.ги

Политика о конфиденциальности даневих

Рисунок 3 – Дашборд

Дашборд предоставляет пользователю набор статистической информации о состоянии всех компонентов системы, а также визуализирует объем доступного пространства для хранения данных, что позволяет более эффективно контролировать ресурсы. В дополнение к этому, интерфейс включает визуальные индикаторы, которые обозначают количество узлов, ресурсов и пулов хранения, требующих внимания администратора.

Интерфейс программного обеспеченя позволяет переключаться на английский язык в случае необходимости.

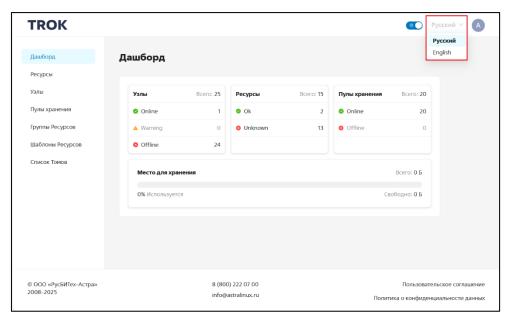


Рисунок 4 – Выпадающее меню для выбора языка интерфейса

Также предусмотрена возможность переключения на темную цветовую тему.

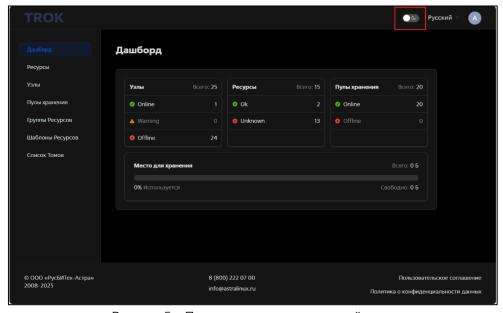


Рисунок 5 – Переключатель для цветовой темы

4. Ресурсы

Ресурсы представляют собой логические или физические единицы, которые используются для хранения, обработки и передачи данных.

При создании нового ресурса программное обеспечение требует ввода следующих данных:

- Поле с выпадающим списком «Имя шаблона ресурса» позволяет выбрать ранее созданный шаблон, который определяет характеристики нового ресурса. Шаблоны ресурсов создаются во вкладке «Шаблоны ресурсов» и служат для стандартизации конфигураций, упрощая процесс развертывания.
- Поле «Узел» позволяет выбрать конкретный узел, на котором будет размещен ресурс. Узлы представляют собой физические или виртуальные машины, ранее созданные во вкладке «Узлы», и обеспечивают вычислительные мощности для работы с ресурсами.
- Поле с выпадающим списком «Пул хранения» позволяет выбрать группу хранения, которая была создана на вкладке «Пулы хранения». Пулы хранения представляют собой группы физических устройств, объединенных для оптимизации использования пространства и повышения производительности.

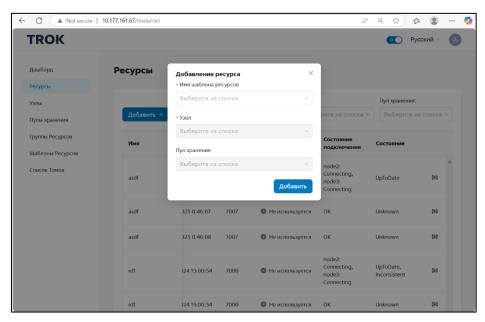


Рисунок 6 – Добавление ресурса

Созданные ресурсы отображаются в таблице с заголовками:

- Имя: Уникальное название ресурса.
- Имя узла: Указывает на узел, на котором размещен ресурс.
- Время создания: Дата и время, когда ресурс был создан.
- Порт: Номер порта, используемого для подключения к ресурсу.
- Статус использования: Информация о текущем состоянии использования ресурса.
- Состояние подключения: Указывает на статус подключения ресурса к системе.
- Состояние: Общая информация о работоспособности и состоянии ресурса.

Для удаления ресурса нажмите на значок ⁰⁺⁰ в таблице и подтвердите свое действие в появившемся окне подтверждения.

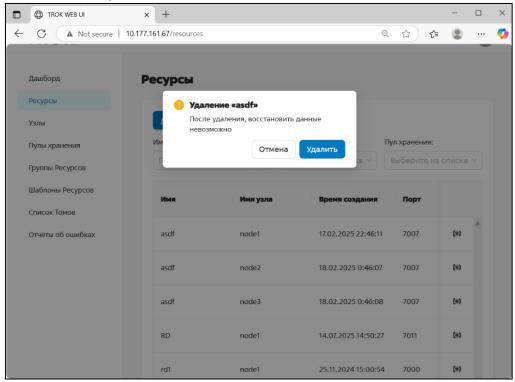


Рисунок 7 – Удаление ресурса

Узлы

Вкладка «Узлы» предназначена для управления и мониторинга вычислительных узлов в системе хранения данных.

При создании нового узла программное обеспечение требует ввода следующих данных:

- Поле с выпадающим списком «Тип узла» предполагает выбор одного из трех вариантов:
 - Сателлит для хранения данных.
 - Контроллер для управления кластером.
 - Комбинированный для совмещения ролей (минимизация серверов).
- Поле «Имя узла» предназначено для ввода уникального идентификатора (например, node-01, ctrl-main). Более подробная информация о валидации всех полей указана в пункте 11.
- Поле IP-адрес предназначено для ввода сетевого адреса узла для последующей связи его внутри кластера.
- Поле «Порт» изменяет свое название в зависимости от того, какой тип узла выбран:
 - Для сателлита: порт 3366 (можно изменить, если конфликтует с другими сервисами).
 - Для контроллера: порт 3370 (аналогично настраивается).
 - Для комбинированного: оба порта.

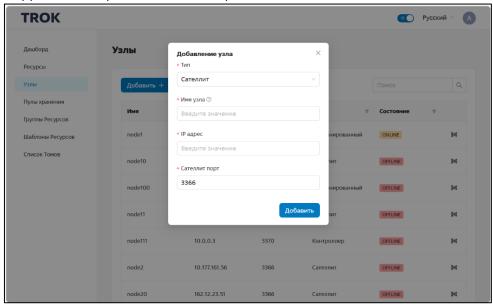


Рисунок 8 – Добавление нового узла

Созданные узлы отображаются в таблице с заголовками:

- Имя: Уникальное название узла (например, satellite-01).
- ІР адрес: Адрес, по которому узел доступен в сети.
- Порт: Номер порта, используемого для связи с узлом.
- Тип: Классификация узла (Комбинированный, Сателлит, Контроллер).
- Состояние: Информация о работоспособности узла и его текущем состоянии.

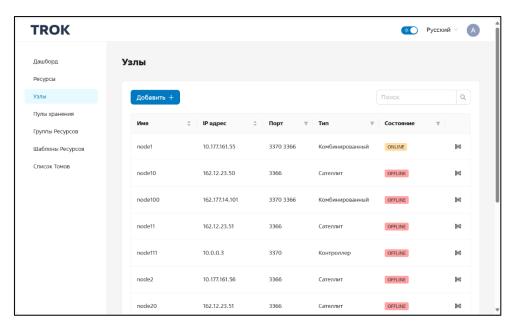


Рисунок 9 – Список узлов

В случае, если требуется внести правки в созданный ранее узел, вы можете сделать это нажав на значок ранее узел, вы можете сделать это нажав на значок в таблице. В появившемся выпадающем меню выберите функцию «Редактировать».

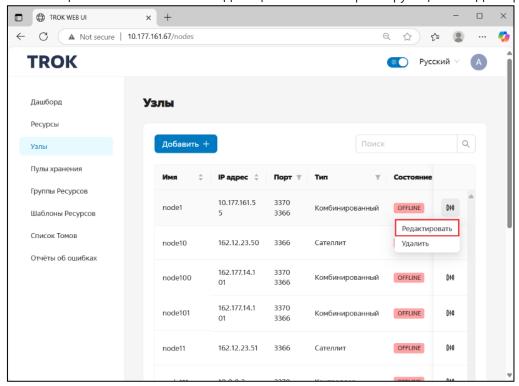


Рисунок 10 – Выпадающее меню для управления созданным узлом

После выбора соответствующей функции предоставляется возможность редактирования данных узла в том же интерфейсном блоке, который использовался при его первоначальном создании. Для удаления узла выберите соответствующую функцию в выпадающем меню и подтвердите свое действие в появившемся окне подтверждения.

6. Пулы хранения

Вкладка «Пулы хранения» предназначена для управления и мониторинга пулов хранения, которые представляют собой логические группы физических дисков или томов, используемых для организации и распределения данных.

Экземпляры одного и того же пула хранения могут быть размещены на нескольких узлах. Для обеспечения корректного функционирования и идентификации данного пула на различных узлах требуется создать на каждом из них пул хранения с идентичным наименованием.

При создании нового пула программное обеспечение требует ввода следующих данных:

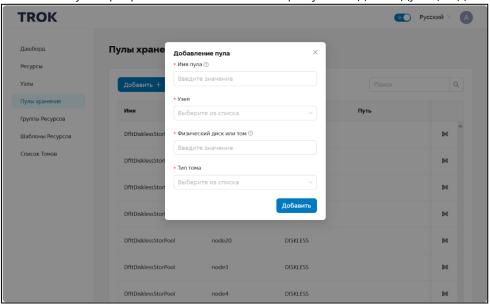


Рисунок 11 – Блок добавления нового пула

- Поле «Имя пула» предназначено для ввода уникального идентификатора, который будет использоваться для идентификации пула в системе.
- Поле с выпадающим списком «Узел» позволяет выбрать узел, на котором будет расположен пул. Это может быть физическая или виртуальная машина, предоставляющая ресурсы для хранения.
- Поле «Физический диск или том» позволяет указать адрес конкретного физического диска или логического тома, который будет включен в пул хранения.
- Поле «Тип тома» дает возможность выбрать модификацию тома, что определяет, как данные будут организованы и доступны. В выпадающем списке доступны следующие варианты конфигураций:
 - «DISKLESS». Тома данного типа не привязаны к физическим дискам. Они используются для создания виртуальных томов, которые могут динамически использовать ресурсы других томов или узлов. Применяются при организации временного хранения данных или как прокси для репликации (например, в DRBD

- для standby-узлов). Не требуют выделения места на диске, но зависят от других узлов для доступа к данным.
- «LVM». Logical Volume Manager. Классические логические тома с фиксированным выделением пространства. Физические диски объединяются в группы томов (VG), из которых впоследствие создаются логические тома (LV). Тома данного типа подходят для статичных нагрузок, где размер данных предсказуем (например, СУБД).
- «LVM_THIN». Тонкие (thin) логические тома с динамическим выделением места. При таком способе организации дискового пространства память выделяется по мере записи данных. Поддерживает снапшоты и клонирование. Чаще всего используется для создания виртуальных машин, где размер диска может быть заявлен, но реально используется меньше.
- «FILE». Представляет собой тома, хранящиеся в виде файла в файловой системе. Имеют преимущества в виде простого способа создания без блочных устройств (например, образы дисков .img). Подобные тома могут использоваться для тестирования или в средах с ограниченными ресурсами.
- «FILE_THIN». Аналог тонких томов, но для файловых систем. Аналогичен LVM_THIN, но использует файлы вместо блочных устройств. Подобная технология экономит место за счет динамического выделения. Может использоваться для создания виртуальных дисков для Docker-контейнеров.
- «SPDK» Storage Performance Development Kit. Набор инструментов для разработки высокопроизводительных систем хранения, использующий прямой доступ к памяти (DMA) и программирование на уровне пользовательского пространства. SPDK позволяет создавать тома, которые обеспечивают низкую задержку и высокую пропускную способность. Технология использует пользовательский режим вводавывода (userspace I/O) для минимизации задержек, а также оптимизирована для работы с SSD/NVMe. Могут использоваться для размещения СУБД.
- «REMOTE_SPDK». Удаленные тома, доступные через SPDK. Технология позволяет использовать NVMe-oF (NVMe over Fabrics) для доступа к дискам по сети, а также поддерживает протоколы RDMA и TCP. Может использоваться для организации кластерного хранилища с распределенным доступом.
- «EBS_TARGET». Тома относится к Amazon Elastic Block Store (EBS), который предоставляет блочные хранилища для использования с Amazon EC2. Предназначены для интеграции с облачными API для гибридных инфраструктур и обеспечивают совместимость с AWS-сервисами. Могут использоваться для создания локального хранилища с облачной логикой управления.
- «EBS_INIT». Elastic Block Store Initialization. Тип тома, который используется для инициализации блочного хранилища Elastic Block Store (EBS). Этот тип тома позволяет настраивать и подготавливать EBS-тома перед их использованием в облачных средах. Часто применяется в сценариях оркестрации (например, Terraform, Ansible) для предварительной настройки томов. После инициализации том может быть преобразован в стандартный тип (например, EBS_TARGET).

- «STORAGE_SPACES». Технология управления томами в Windows, которая объединяет физические диски в пулы с поддержкой RAID, дедупликации. Представляет собой аналог LVM в Linux системах. Часто используется для файлового сервера на базе технологии Windows Server.
- «STORAGE_SPACES_THIN». Расширение Storage Spaces, которое поддерживает тонкие тома. Динамическое выделение места, аналогично LVM_THIN. Подходит для виртуальных сред (Hyper-V, VMware). Виртуальные диски для Hyper-V.

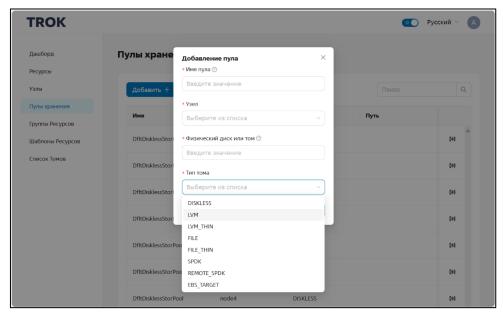


Рисунок 12 – Выпадающий список с выбором типа тома

Созданные пулы хранения отображаются в таблице с следующими заголовками:

- Имя: Название пула хранения.
- Имя узла: Узел, на котором расположен пул.
- Тип тома: Тип тома, используемого в пуле.
- Путь: Физический путь к диску или тому в файловой системе.
- Емкость: Общая емкость пула хранения.
- Свободно: Объем свободного пространства в пуле.

Для создания пула хранения с параметрами, идентичными ранее созданному, необходимо нажать на значок ⁰⁺⁰ в таблице напротив выбранного тома и в появившемся контекстном меню выбрать опцию «Копировать».

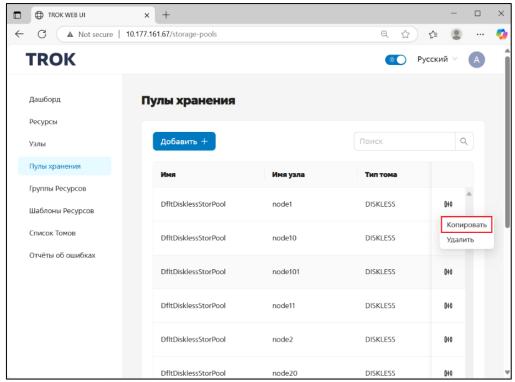


Рисунок 13 – Выпадающее меню для созданного пула хранения

Внесите необходимые изменения и нажмите кнопку «Добавить».

Для удаления пула хранения выберите соответствующую функцию в выпадающем меню и подтвердите свое действие в появившемся окне подтверждения.

7. Группа ресурсов

Группа ресурсов — это логический контейнер, объединяющий тома с одинаковыми параметрами репликации, размещения и доступа.

При создании новой угруппы ресурсов программное обеспечение требует ввода следующих данных:

- Поле «Имя группы ресурсов» предназначено для ввода уникального идентификатора, который будет использоваться для идентификации группы в системе.
- Поле «Количество мест» предполагает указание количества копий данного ресурса.
- Краткое текстовое поле «Описание» предполагает ввод поясняющих данных для группы (например, «Высоконагруженные БД») и помогает идентифицировать назначение группы среди других.
- Если включен чекбокс «Создать бездисковый ресурс на оставшихся узлах», на узлах, не участвующих в хранении данных, создаются виртуальные тома без физического выделения места. Подобные тома используются для размещения резервных копий, доступных только для чтения, а также для быстрого восстановления данных при сбоях.
- Поле «Тип тома» дает возможность выбрать модификацию тома. Более подродная информация о поддерживаемых типах томов указана в пункте 6.
- Радиокнопка «Режим репликации» дает возможность выбрать, какой из двух режимов репликации будет использоваться:
 - Синхронный данные записываются на все реплики одновременно. Гарантирует целостность, но увеличивает задержки.
 - Асинхронный реплики обновляются с задержкой. Подходит для географически распределенных кластеров.
- Выпадающий список «Слои Linstor» средставляет собой узкоспециализированную настройку системы и используется только в том случае, когда необходимо назначить для конкретной группы физических дисков только одну специфическую роль. В классическом варианте работы системы все слои функционируют одновременно и выполняют общий пул задач:
 - Слой Storage создает логический том.
 - Слой DRBD реплицирует его на другие узлы.
 - Слой LUKS шифрует том для безопасности.
 - Слои Writecache или Cache ускоряют доступ.
 - Слои NVMe или OpenFlex обеспечивают сетевой доступ к тому.

Назначение специализированной роли для каждого из слоев может быть обусловлен различными сценариями и потребностями пользователя:

- Cache может использоваться в случае, если требуется ускорить доступ к данным в высоконагруженных приложениях, где важна скорость чтения, а также в тестовых средах, где нужно быстро проверять производительность приложений без необходимости в долговременном хранении данных.
- Слой storage используется, если основная задача долговременное хранение данных без дополнительных требований к репликации или шифрованию и где простота и легкость настройки важнее, чем отказоустойчивость.

- DRBD используется в сценариях, где данные должны быть синхронизированы между двумя узлами в реальном времени, например, в кластерах.
- NVMe обеспечивает высокую скорость обработки больших объемов данных.
- LUKS отвечает за безопасность данных и защиту информации.
- WriteCache требуется для повышения производительности операций записи.
- OpenFlex решает проблему интеграции системы с другими решениями.
- Exos можно выбрать, в случае если нужно использовать расширенные функции управления данными и их обработки без хранения, без необходимости в других слоях.
- «Пул хранения» может быть выбран из ранее созданных пулов.
- Свойства размещения настраиваются по следующему принципу:
 - поле ввода replicas_on_same указывает, сколько реплик можно разместить на одном узле (например, replicas_on_same=rack:1 не более 1 реплики на узел);
 - поле ввода replicas_on_different требует размещения реплик на разных узлах (например, replicas_on_different=node реплики на разных узлах).
 - поле ввода not_place_with_rsc запрещает размещать ресурс вместе с указанными ресурсами (например, избегать совместного размещения БД и кэша).
 - поле ввода not_place_with_rsc_regex запрет на размещение с ресурсами, имена которых соответствуют регулярному выражению (например, web-.*).

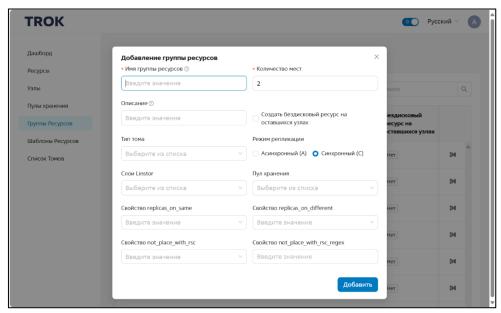


Рисунок 14 – Меню для добавления группы ресурсов

Созданные группы ресурсов отображаются в таблице с следующими заголовками:

- Имя уникальное название группы ресурсов (например, high availability, archive).
- Количество мест количество репликаций ресурса.
- Пулы хранения список пулов, из которых выделяется место для ресурсов группы.
- Режим репликации тип синхронизации данных между репликами.

- Бездисковый ресурс на оставшихся узлах наличие включенного режима.
- Описание краткая информация, указанная в процессе создания группы.

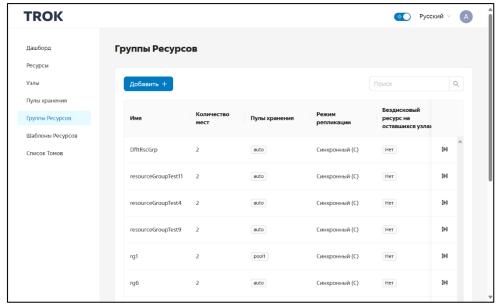


Рисунок 15 – Список групп ресурсов

Для внесения изменений в параметры ранее созданной группы ресурсов нажмите на значок в таблице. В появившемся выпадающем меню выберите функцию «Редактировать». Для удаления группы ресурсов выберите соответствующую функцию в выпадающем меню и подтвердите свое действие в появившемся окне подтверждения.

8. Шаблоны ресурсов

Раздел «Шаблоны ресурсов» позволяют изменять режим репликации для уже созданных групп ресурсов.

При создании нового шаблона ресурсов программное обеспечение требует ввода следующих данных:

- Поле «Имя шаблона ресурсов» предназначено для ввода уникального идентификатора, шаблона.
- Поле с выпадающим списком «Группа ресурсов» предназначено для выбора ранее созданной группы ресурсов.
- Радиокнопка «Режим репликации» дает возможность выбрать, какой из двух режимов репликации будет использоваться. Более подробная информация о режимах репликации указана в пункте 7.

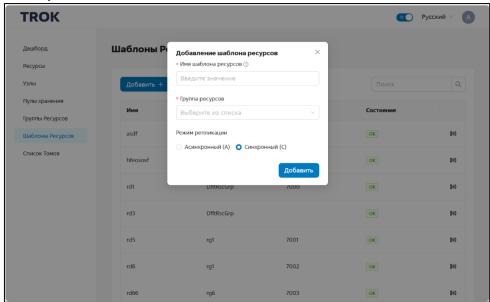


Рисунок 16 – Функция добавления шаблона ресурсов

Созданные шаблоны ресурсов отображаются в таблице с следующими заголовками:

- Имя уникальное имя шаблона ресурсов.
- Имя группы ресурсов уникальное имя группы ресурсов, для которой был создан шаблон.
- Порт сетевой идентификатор принадлежащий узлу с использованием которого была создана группа ресурсов.
- Состояние.

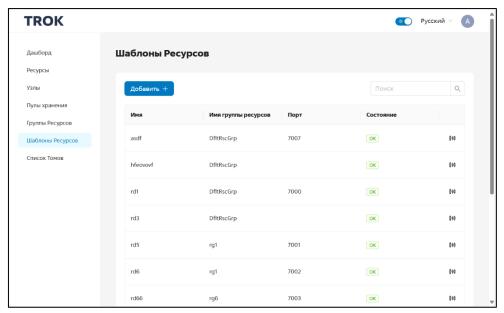


Рисунок 17 – Список шаблонов ресурсов

Для внесения изменений в параметры ранее созданного шаблона ресурсов нажмите на значок в таблице. В появившемся выпадающем меню выберите функцию «Редактировать». Для удаления шаблона ресурсов выберите соответствующую функцию в выпадающем меню и

подтвердите свое действие в появившемся окне подтверждения.

9. Список томов

Страница с названием «Список томов» представляет собой интерфейс для созданных томов в системе хранения данных. Основным элементом страницы является таблица, в которой отображается подробная информация о каждом томе. Таблица включает следующие столбцы:

- Имя ресурса / Номер тома уникальный идентификатор тома, состоящий из названия ресурса и номера, что позволяет однозначно идентифицировать том в системе.
- Имя узла название вычислительного узла, на котором размещён данный том, что помогает отслеживать распределение ресурсов по инфраструктуре.
- Имя пула хранения наименование пула хранения, к которому относится том, что облегчает управление и мониторинг используемых хранилищ.
- Путь файловый путь к тому на узле, указывающий на место расположение данных.
- Выделенный размер объём дискового пространства, зарезервированного под данный том, выраженный в удобных единицах измерения (например, ГБ или ТБ).
- Статус использования текущий режим эксплуатации тома, позволяющий быстро оценить доступность ресурса.
- Состояние техническое состояние тома, что важно для своевременного выявления и устранения проблем.

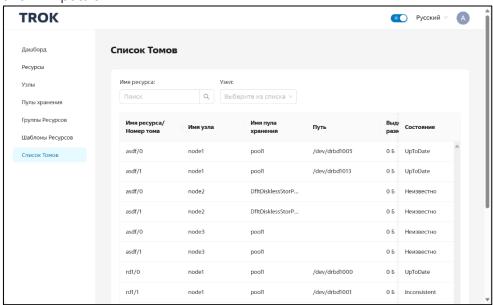


Рисунок 18 – Список томов

10. Отчеты об ошибках

В разделе «Отчёты об ошибках» представлена актуальная информация о возникающих в процессе работы программного обеспечения ошибках. Основным элементом страницы является таблица, обеспечивающая детальное отображение сведений о каждой зарегистрированной ошибке.

Таблица содержит следующие ключевые столбцы:

- Идентификатор уникальный код ошибки, например, в формате UUID (например, 67СВ0АF7-00000-020800), который служит для однозначной идентификации инцидента в системе.
- Время временная метка возникновения ошибки, позволяющая определить момент её регистрации и проанализировать хронологию событий.
- Имя узла наименование узла, в котором была зафиксирована ошибка.
- Тип узла категория или роль узла в инфраструктуре (например, сервер, клиент, контроллер).
- Содержание ошибки краткое описание сути ошибки, предоставляющее предварительное понимание её характера и возможных причин.

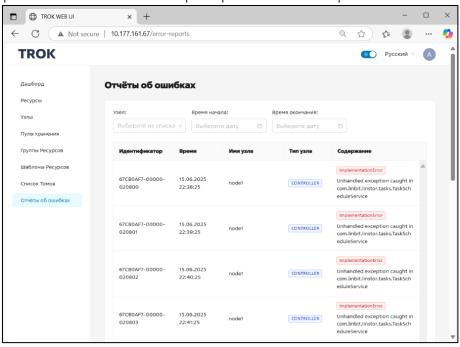


Рисунок 19 – Раздел «Отчеты об ошибках»

Для получения более детальной информации предусмотрена возможность открытия расширенного отчёта об ошибке при выборе соответствующей записи в таблице.

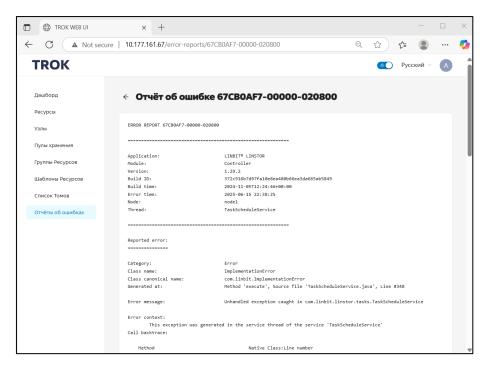


Рисунок 20 – Пример вывода детальной информации об ошибке

Кроме того, предусмотрена возможность фильтрации списка ошибок по соответствующим узлам или по временным интервалам.

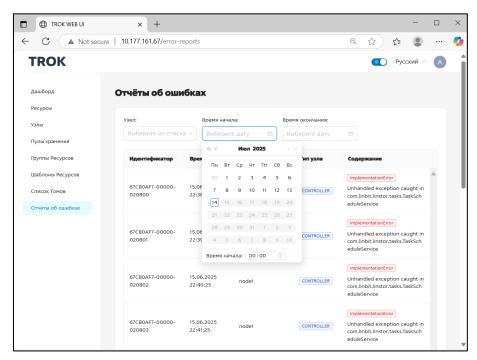


Рисунок 21 – Выпадающее меню, позволяющее выбрать диапазон дат

11. Валидация полей

При создании новых сущностей обязательным для заполнения является каждый параметр, отмеченный специальным символом (звёздочкой). Поля, предназначенные для указания имён сущностей (таких как узлы, тома и прочие), должны содержать только символы латинского алфавита. Максимальная длина имени ограничена 255 символами. Использование пробелов и следующих специальных символов запрещено: !#\$%^&*()=+{}[].

Поле для ввода IP-адреса принимает числовые значения, соответствующие стандартам IPv4 или IPv6. Валидация IPv4-адреса включает проверку структуры на наличие четырёх октетов, разделённых точками, при этом каждый октет должен находиться в диапазоне от 0 до 255. Для IPv6-адреса проверяется корректность шестнадцатеричного представления с учётом допустимых сокращений и разделителей (двоеточий).

Значение в поле «Порт» должно быть целым числом и находиться в диапазоне от 1 до 65535, что соответствует допустимым значениям портов протоколов TCP и UDP.

Поле «Физический диск или том» предполагает ввод абсолютного пути к блочному устройству, например, /dev/sdb, /dev/nvme0n1 или к разделу, например, /dev/sdb1. Введённый путь должен соответствовать стандартному синтаксису файловых путей в Unix-подобных операционных системах.